

JACOBS INSTITUTE FOR **DESIGN INNOVATION COLLEGE OF ENGINEERING, UC BERKELEY**

Market Need

There are 47.5 million Americans who bike regularly. Our environmental friendly product allows users to charge their phones during their commute, while accessing their phone for various purposes, such as GPS and flashlight

Scale Up Production

Both injection molding and stamping & forming will allow us to produce a large quantity of part rapidly. Producing a high quantity of parts at high efficiency rate will lower production costs per part.

Housing: Injection molding with resin **Dynamo Clamps:** Metal stamping and forming **Phone Mount:** Injection molding with ABS

Reflection

We learned a lot about tolerance in manufacturing processes and how our design would require us to choose manufacturing methods carefully. More importantly, we learned how to use our knowledge from E27 on developing products that could benefit society.

In the future, we hope to better protect the electrical components in harsh weather by developing an elastic and watertight housing unit to prevent water and dirt from getting in. We would also make the clamp and mounts more adaptable to various bike frame sizes.

Bicycle BattBooster: Bicycle-powered Phone Charger

Hydrogen: X Sun, Miles Luhn, Lizzette Corrales, Monica Tang, Claudia Renero, LuLu Zhang

Differentiation

Clean energy

- does not require a battery pack
- powers devices via the energy generated fro rotation of the rear wheel

Compact

- includes pre-assembled components (unlike solutions that are marketed as DIY projects)
- just install and go!

Accessibility of phone

allows users to access the phone's functiona (e.g. GPS, flashlight) while it is charging

Existing products often have a limited set of feature our solution combines these into one compact an easy-to-assemble product.

Design

Dynamo

Clamps

	Component Name	Process	Material	Reasoning
е	Housing	3D Printing	PLA Filament	-Can print simpler geometry of housin -light weight -cheap to produce
ent	Bottle Dynamo Mount (Mount to Dynamo)	3D Printing (FDM)	Ultimaker PLA	-Can print complex geometry -light weight, but st -cheap to produce
	Bottle Dynamo Mount (Mount to Bike)	3D Printing (FDM)	Ultimaker PLA	-Can print complex geometry -light weight, but st -cheap to produce
	Phone Mount (clamp for phone)	3D Printing (FDM)	Ultimaker PLA	-Can print complex geometry -light weight, but st -cheap to produce
t	Phone Mount (mount for bike)	3D Printing (FDM)	Ultimaker PLA	-Can print complex geometry -light weight, but st -cheap to produce

	Fit #	Connects Compone nt (A)	to Componen t # (B) or external object	Function of Fit	ANSI grade of fit or "snap fit"	Component A Critical Dimension Tolerance	Cor B C Dim Tole
hone lount	1	Dynamo clamp (mount to dynamo)	Dynamo via M10 bolt	Attach dynamo to mount	LC10	Hole Diameter 11mm ± 0.4 mm	9.9i 0.1i
	2	Dynamo mount (mount to bike)	Bike frame via M10 bolt	Attach dynamo mount to bike frame	LC10	Hole Diameter 11mm ± 0.4 mm	9.9i 0.1i
	3	Housing	Bicycle frame	Hold electric componen ts in place on the bike	LN2	Diameter 19.8mm ± 0.4 mm	Dia bike
	4	Phone mount (mount to bike)	Bicycle handlebar s	Hold the mount onto the bike	FN2	Diameter of clamp that attaches to handlebar 22.1 mm ± 0.1 mm	Rac har 11.
	5	Phone mount (mount to phone)	Phone	Hold the phone in place	N/A (mechan ism)	Minimum width of clamp (ie. when clamp is closed) that attaches to phone 70 mm	Wic phc mm

Engineering 27: Introduction to Manufacturing and Tolerancing, Spring 2020

